Estimating the wrong Markov random field: Benefits in the computation-limited setting

نویسنده

  • Martin J. Wainwright
چکیده

Consider the problem of joint parameter estimation and prediction in a Markov random field: i.e., the model parameters are estimated on the basis of an initial set of data, and then the fitted model is used to perform prediction (e.g., smoothing, denoising, interpolation) on a new noisy observation. Working in the computation-limited setting, we analyze a joint method in which the same convex variational relaxation is used to construct an M-estimator for fitting parameters, and to perform approximate marginalization for the prediction step. The key result of this paper is that in the computation-limited setting, using an inconsistent parameter estimator (i.e., an estimator that returns the “wrong” model even in the infinite data limit) is provably beneficial, since the resulting errors can partially compensate for errors made by using an approximate prediction technique. En route to this result, we analyze the asymptotic properties of M-estimators based on convex variational relaxations, and establish a Lipschitz stability property that holds for a broad class of variational methods. We show that joint estimation/prediction based on the reweighted sum-product algorithm substantially outperforms a commonly used heuristic based on ordinary sum-product. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting

Consider the problem of joint parameter estimation and prediction in a Markov random field: that is, the model parameters are estimated on the basis of an initial set of data, and then the fitted model is used to perform prediction (e.g., smoothing, denoising, interpolation) on a new noisy observation. Working under the restriction of limited computation, we analyze a joint method in which the ...

متن کامل

Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting

Consider the problem of joint parameter estimation and prediction in a Markov random field: i.e., the model parameters are estimated on the basis of an initial set of data, and then the fitted model is used to perform prediction (e.g., smoothing, denoising, interpolation) on a new noisy observation. Working under the restriction of limited computation, we analyze a joint method in which the sam...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Bayesian selection of the neighbourhood order for Gauss-Markov texture models

9 Gauss–Markov random fields have been successfully used as texture models in a host of applications, ranging from 10 synthesis, feature extraction, classification and segmentation to query by image content and information retrieval in 11 large image databases. An issue that deserves special consideration is the selection of the neighbourhood order (model 12 complexity), which should faithfully...

متن کامل

Estimation of High-dimensional Partially-observed Discrete Markov Random Fields

We consider the problem of estimating the parameters of discrete Markov random fields from partially observed data in a high-dimensional setting. Using a `-penalized pseudo-likelihood approach, we fit a misspecified model obtained by ignoring the missing data problem. We derive an estimation error bound that highlights the effect of the misspecification. We report some simulation results that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005